Application of Predictive Model Selection to Coupled Models
نویسندگان
چکیده
A predictive Bayesian model selection approach is presented to discriminate coupled models used to predict an unobserved quantity of interest (QoI). The need for accurate predictions arises in a variety of critical applications such as climate, aerospace and defense. A model problem is introduced to study the prediction yielded by the coupling of two physics/subcomponents. For each single physics domain, a set of model classes and a set of sensor observations are available. A goaloriented algorithm using a predictive approach to Bayesian model selection is then used to select the combination of single physics models that best predict the QoI. It is shown that the best coupled model for prediction is the one that provides the most robust predictive distribution for the QoI.
منابع مشابه
Extracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...
متن کاملA New Model Selection Test with Application to the Censored Data of Carbon Nanotubes Coating
Model selection of nano and micro droplet spreading can be widely used to predict and optimize of different coating processes such as ink jet printing, spray painting and plasma spraying. The idea of model selection is beginning with a set of data and rival models to choice the best one. The decision making on this set is an important question in statistical inference. Some tests and criteria a...
متن کاملطراحی شبکه عصبی مصنوعی برای مدلبندی پاسخهای دو متغیره آمیخته و کاربرد آن در دادههای پزشکی
Background & Objective: Mixed outcomes arise when, in a multivariate model, response variables measured on different scales such as binary and continuous. Artificial neural networks (ANN) can be used for modeling in situations where classic models have restricted application when some of their assumptions are not met. In this paper, we propose a method based on ANNs for modeling mixed binary a...
متن کاملApplying Combined Approach of Sequential Floating Forward Selection and Support Vector Machine to Predict Financial Distress of Listed Companies in Tehran Stock Exchange Market
Objective: Nowadays, financial distress prediction is one of the most important research issues in the field of risk management that has always been interesting to banks, companies, corporations, managers and investors. The main objective of this study is to develop a high performance predictive model and to compare the results with other commonly used models in financial distress prediction M...
متن کاملLogic regression and its application in predicting diseases
Regression is one of the most important statistical tools in data analysis and study of the relationship between predictive variables and the response variable. in most issues, regression models and decision tress only can show the main effects of predictor variables on the response and considering interactions between variables does not exceed of two way and ultimately three-way, due to co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1107.0927 شماره
صفحات -
تاریخ انتشار 2011